extension | φ:Q→Out N | d | ρ | Label | ID |
(C2×Q8)⋊1C22 = C22⋊SD16 | φ: C22/C1 → C22 ⊆ Out C2×Q8 | 16 | | (C2xQ8):1C2^2 | 64,131 |
(C2×Q8)⋊2C22 = D4.9D4 | φ: C22/C1 → C22 ⊆ Out C2×Q8 | 16 | 4 | (C2xQ8):2C2^2 | 64,136 |
(C2×Q8)⋊3C22 = C22.32C24 | φ: C22/C1 → C22 ⊆ Out C2×Q8 | 16 | | (C2xQ8):3C2^2 | 64,219 |
(C2×Q8)⋊4C22 = C23⋊2Q8 | φ: C22/C1 → C22 ⊆ Out C2×Q8 | 16 | | (C2xQ8):4C2^2 | 64,224 |
(C2×Q8)⋊5C22 = C22.45C24 | φ: C22/C1 → C22 ⊆ Out C2×Q8 | 16 | | (C2xQ8):5C2^2 | 64,232 |
(C2×Q8)⋊6C22 = C24⋊C22 | φ: C22/C1 → C22 ⊆ Out C2×Q8 | 16 | | (C2xQ8):6C2^2 | 64,242 |
(C2×Q8)⋊7C22 = D4○SD16 | φ: C22/C1 → C22 ⊆ Out C2×Q8 | 16 | 4 | (C2xQ8):7C2^2 | 64,258 |
(C2×Q8)⋊8C22 = C2×C22⋊Q8 | φ: C22/C2 → C2 ⊆ Out C2×Q8 | 32 | | (C2xQ8):8C2^2 | 64,204 |
(C2×Q8)⋊9C22 = C22.19C24 | φ: C22/C2 → C2 ⊆ Out C2×Q8 | 16 | | (C2xQ8):9C2^2 | 64,206 |
(C2×Q8)⋊10C22 = C2×C4.4D4 | φ: C22/C2 → C2 ⊆ Out C2×Q8 | 32 | | (C2xQ8):10C2^2 | 64,207 |
(C2×Q8)⋊11C22 = C22.29C24 | φ: C22/C2 → C2 ⊆ Out C2×Q8 | 16 | | (C2xQ8):11C2^2 | 64,216 |
(C2×Q8)⋊12C22 = D4⋊5D4 | φ: C22/C2 → C2 ⊆ Out C2×Q8 | 16 | | (C2xQ8):12C2^2 | 64,227 |
(C2×Q8)⋊13C22 = C22×SD16 | φ: C22/C2 → C2 ⊆ Out C2×Q8 | 32 | | (C2xQ8):13C2^2 | 64,251 |
(C2×Q8)⋊14C22 = C2×C8⋊C22 | φ: C22/C2 → C2 ⊆ Out C2×Q8 | 16 | | (C2xQ8):14C2^2 | 64,254 |
(C2×Q8)⋊15C22 = C2×C8.C22 | φ: C22/C2 → C2 ⊆ Out C2×Q8 | 32 | | (C2xQ8):15C2^2 | 64,255 |
(C2×Q8)⋊16C22 = D8⋊C22 | φ: C22/C2 → C2 ⊆ Out C2×Q8 | 16 | 4 | (C2xQ8):16C2^2 | 64,256 |
(C2×Q8)⋊17C22 = C2×2- 1+4 | φ: C22/C2 → C2 ⊆ Out C2×Q8 | 32 | | (C2xQ8):17C2^2 | 64,265 |
(C2×Q8)⋊18C22 = C2.C25 | φ: C22/C2 → C2 ⊆ Out C2×Q8 | 16 | 4 | (C2xQ8):18C2^2 | 64,266 |
(C2×Q8)⋊19C22 = C22×C4○D4 | φ: trivial image | 32 | | (C2xQ8):19C2^2 | 64,263 |
(C2×Q8)⋊20C22 = C2×2+ 1+4 | φ: trivial image | 16 | | (C2xQ8):20C2^2 | 64,264 |
extension | φ:Q→Out N | d | ρ | Label | ID |
(C2×Q8).1C22 = C42.C4 | φ: C22/C1 → C22 ⊆ Out C2×Q8 | 16 | 4 | (C2xQ8).1C2^2 | 64,36 |
(C2×Q8).2C22 = C42.3C4 | φ: C22/C1 → C22 ⊆ Out C2×Q8 | 16 | 4- | (C2xQ8).2C2^2 | 64,37 |
(C2×Q8).3C22 = C22⋊Q16 | φ: C22/C1 → C22 ⊆ Out C2×Q8 | 32 | | (C2xQ8).3C2^2 | 64,132 |
(C2×Q8).4C22 = D4.7D4 | φ: C22/C1 → C22 ⊆ Out C2×Q8 | 32 | | (C2xQ8).4C2^2 | 64,133 |
(C2×Q8).5C22 = D4.8D4 | φ: C22/C1 → C22 ⊆ Out C2×Q8 | 16 | 4 | (C2xQ8).5C2^2 | 64,135 |
(C2×Q8).6C22 = D4.10D4 | φ: C22/C1 → C22 ⊆ Out C2×Q8 | 16 | 4- | (C2xQ8).6C2^2 | 64,137 |
(C2×Q8).7C22 = D4.D4 | φ: C22/C1 → C22 ⊆ Out C2×Q8 | 32 | | (C2xQ8).7C2^2 | 64,142 |
(C2×Q8).8C22 = C4⋊2Q16 | φ: C22/C1 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).8C2^2 | 64,143 |
(C2×Q8).9C22 = D4.2D4 | φ: C22/C1 → C22 ⊆ Out C2×Q8 | 32 | | (C2xQ8).9C2^2 | 64,144 |
(C2×Q8).10C22 = Q8.D4 | φ: C22/C1 → C22 ⊆ Out C2×Q8 | 32 | | (C2xQ8).10C2^2 | 64,145 |
(C2×Q8).11C22 = C8⋊8D4 | φ: C22/C1 → C22 ⊆ Out C2×Q8 | 32 | | (C2xQ8).11C2^2 | 64,146 |
(C2×Q8).12C22 = C8.18D4 | φ: C22/C1 → C22 ⊆ Out C2×Q8 | 32 | | (C2xQ8).12C2^2 | 64,148 |
(C2×Q8).13C22 = C8⋊D4 | φ: C22/C1 → C22 ⊆ Out C2×Q8 | 32 | | (C2xQ8).13C2^2 | 64,149 |
(C2×Q8).14C22 = C8.D4 | φ: C22/C1 → C22 ⊆ Out C2×Q8 | 32 | | (C2xQ8).14C2^2 | 64,151 |
(C2×Q8).15C22 = D4.3D4 | φ: C22/C1 → C22 ⊆ Out C2×Q8 | 16 | 4 | (C2xQ8).15C2^2 | 64,152 |
(C2×Q8).16C22 = D4.5D4 | φ: C22/C1 → C22 ⊆ Out C2×Q8 | 32 | 4- | (C2xQ8).16C2^2 | 64,154 |
(C2×Q8).17C22 = C23.47D4 | φ: C22/C1 → C22 ⊆ Out C2×Q8 | 32 | | (C2xQ8).17C2^2 | 64,164 |
(C2×Q8).18C22 = C23.48D4 | φ: C22/C1 → C22 ⊆ Out C2×Q8 | 32 | | (C2xQ8).18C2^2 | 64,165 |
(C2×Q8).19C22 = C23.20D4 | φ: C22/C1 → C22 ⊆ Out C2×Q8 | 32 | | (C2xQ8).19C2^2 | 64,166 |
(C2×Q8).20C22 = C4.SD16 | φ: C22/C1 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).20C2^2 | 64,168 |
(C2×Q8).21C22 = C42.78C22 | φ: C22/C1 → C22 ⊆ Out C2×Q8 | 32 | | (C2xQ8).21C2^2 | 64,169 |
(C2×Q8).22C22 = C42.28C22 | φ: C22/C1 → C22 ⊆ Out C2×Q8 | 32 | | (C2xQ8).22C2^2 | 64,170 |
(C2×Q8).23C22 = C42.30C22 | φ: C22/C1 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).23C2^2 | 64,172 |
(C2×Q8).24C22 = C8⋊5D4 | φ: C22/C1 → C22 ⊆ Out C2×Q8 | 32 | | (C2xQ8).24C2^2 | 64,173 |
(C2×Q8).25C22 = C4⋊Q16 | φ: C22/C1 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).25C2^2 | 64,175 |
(C2×Q8).26C22 = C8.12D4 | φ: C22/C1 → C22 ⊆ Out C2×Q8 | 32 | | (C2xQ8).26C2^2 | 64,176 |
(C2×Q8).27C22 = C8⋊3D4 | φ: C22/C1 → C22 ⊆ Out C2×Q8 | 32 | | (C2xQ8).27C2^2 | 64,177 |
(C2×Q8).28C22 = C8.2D4 | φ: C22/C1 → C22 ⊆ Out C2×Q8 | 32 | | (C2xQ8).28C2^2 | 64,178 |
(C2×Q8).29C22 = C22.33C24 | φ: C22/C1 → C22 ⊆ Out C2×Q8 | 32 | | (C2xQ8).29C2^2 | 64,220 |
(C2×Q8).30C22 = C22.36C24 | φ: C22/C1 → C22 ⊆ Out C2×Q8 | 32 | | (C2xQ8).30C2^2 | 64,223 |
(C2×Q8).31C22 = C23.41C23 | φ: C22/C1 → C22 ⊆ Out C2×Q8 | 32 | | (C2xQ8).31C2^2 | 64,225 |
(C2×Q8).32C22 = D4⋊3Q8 | φ: C22/C1 → C22 ⊆ Out C2×Q8 | 32 | | (C2xQ8).32C2^2 | 64,235 |
(C2×Q8).33C22 = C22.49C24 | φ: C22/C1 → C22 ⊆ Out C2×Q8 | 32 | | (C2xQ8).33C2^2 | 64,236 |
(C2×Q8).34C22 = Q82 | φ: C22/C1 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).34C2^2 | 64,239 |
(C2×Q8).35C22 = C22.56C24 | φ: C22/C1 → C22 ⊆ Out C2×Q8 | 32 | | (C2xQ8).35C2^2 | 64,243 |
(C2×Q8).36C22 = C22.57C24 | φ: C22/C1 → C22 ⊆ Out C2×Q8 | 32 | | (C2xQ8).36C2^2 | 64,244 |
(C2×Q8).37C22 = Q8○D8 | φ: C22/C1 → C22 ⊆ Out C2×Q8 | 32 | 4- | (C2xQ8).37C2^2 | 64,259 |
(C2×Q8).38C22 = C2×C4.10D4 | φ: C22/C2 → C2 ⊆ Out C2×Q8 | 32 | | (C2xQ8).38C2^2 | 64,93 |
(C2×Q8).39C22 = M4(2).8C22 | φ: C22/C2 → C2 ⊆ Out C2×Q8 | 16 | 4 | (C2xQ8).39C2^2 | 64,94 |
(C2×Q8).40C22 = C2×Q8⋊C4 | φ: C22/C2 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).40C2^2 | 64,96 |
(C2×Q8).41C22 = C23.24D4 | φ: C22/C2 → C2 ⊆ Out C2×Q8 | 32 | | (C2xQ8).41C2^2 | 64,97 |
(C2×Q8).42C22 = C23.36D4 | φ: C22/C2 → C2 ⊆ Out C2×Q8 | 32 | | (C2xQ8).42C2^2 | 64,98 |
(C2×Q8).43C22 = C23.38D4 | φ: C22/C2 → C2 ⊆ Out C2×Q8 | 32 | | (C2xQ8).43C2^2 | 64,100 |
(C2×Q8).44C22 = C4×SD16 | φ: C22/C2 → C2 ⊆ Out C2×Q8 | 32 | | (C2xQ8).44C2^2 | 64,119 |
(C2×Q8).45C22 = C4×Q16 | φ: C22/C2 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).45C2^2 | 64,120 |
(C2×Q8).46C22 = SD16⋊C4 | φ: C22/C2 → C2 ⊆ Out C2×Q8 | 32 | | (C2xQ8).46C2^2 | 64,121 |
(C2×Q8).47C22 = Q16⋊C4 | φ: C22/C2 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).47C2^2 | 64,122 |
(C2×Q8).48C22 = Q8⋊D4 | φ: C22/C2 → C2 ⊆ Out C2×Q8 | 32 | | (C2xQ8).48C2^2 | 64,129 |
(C2×Q8).49C22 = D4⋊D4 | φ: C22/C2 → C2 ⊆ Out C2×Q8 | 32 | | (C2xQ8).49C2^2 | 64,130 |
(C2×Q8).50C22 = C4⋊SD16 | φ: C22/C2 → C2 ⊆ Out C2×Q8 | 32 | | (C2xQ8).50C2^2 | 64,141 |
(C2×Q8).51C22 = Q8⋊Q8 | φ: C22/C2 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).51C2^2 | 64,156 |
(C2×Q8).52C22 = C4.Q16 | φ: C22/C2 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).52C2^2 | 64,158 |
(C2×Q8).53C22 = Q8.Q8 | φ: C22/C2 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).53C2^2 | 64,160 |
(C2×Q8).54C22 = C23.36C23 | φ: C22/C2 → C2 ⊆ Out C2×Q8 | 32 | | (C2xQ8).54C2^2 | 64,210 |
(C2×Q8).55C22 = C2×C4⋊Q8 | φ: C22/C2 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).55C2^2 | 64,212 |
(C2×Q8).56C22 = C22.26C24 | φ: C22/C2 → C2 ⊆ Out C2×Q8 | 32 | | (C2xQ8).56C2^2 | 64,213 |
(C2×Q8).57C22 = C23.37C23 | φ: C22/C2 → C2 ⊆ Out C2×Q8 | 32 | | (C2xQ8).57C2^2 | 64,214 |
(C2×Q8).58C22 = C23.38C23 | φ: C22/C2 → C2 ⊆ Out C2×Q8 | 32 | | (C2xQ8).58C2^2 | 64,217 |
(C2×Q8).59C22 = C22.31C24 | φ: C22/C2 → C2 ⊆ Out C2×Q8 | 32 | | (C2xQ8).59C2^2 | 64,218 |
(C2×Q8).60C22 = C22.35C24 | φ: C22/C2 → C2 ⊆ Out C2×Q8 | 32 | | (C2xQ8).60C2^2 | 64,222 |
(C2×Q8).61C22 = D4⋊6D4 | φ: C22/C2 → C2 ⊆ Out C2×Q8 | 32 | | (C2xQ8).61C2^2 | 64,228 |
(C2×Q8).62C22 = Q8⋊5D4 | φ: C22/C2 → C2 ⊆ Out C2×Q8 | 32 | | (C2xQ8).62C2^2 | 64,229 |
(C2×Q8).63C22 = D4×Q8 | φ: C22/C2 → C2 ⊆ Out C2×Q8 | 32 | | (C2xQ8).63C2^2 | 64,230 |
(C2×Q8).64C22 = C22.46C24 | φ: C22/C2 → C2 ⊆ Out C2×Q8 | 32 | | (C2xQ8).64C2^2 | 64,233 |
(C2×Q8).65C22 = C22.50C24 | φ: C22/C2 → C2 ⊆ Out C2×Q8 | 32 | | (C2xQ8).65C2^2 | 64,237 |
(C2×Q8).66C22 = Q8⋊3Q8 | φ: C22/C2 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).66C2^2 | 64,238 |
(C2×Q8).67C22 = C22.53C24 | φ: C22/C2 → C2 ⊆ Out C2×Q8 | 32 | | (C2xQ8).67C2^2 | 64,240 |
(C2×Q8).68C22 = C22×Q16 | φ: C22/C2 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).68C2^2 | 64,252 |
(C2×Q8).69C22 = C2×C4○D8 | φ: C22/C2 → C2 ⊆ Out C2×Q8 | 32 | | (C2xQ8).69C2^2 | 64,253 |
(C2×Q8).70C22 = C2×C4×Q8 | φ: trivial image | 64 | | (C2xQ8).70C2^2 | 64,197 |
(C2×Q8).71C22 = C4×C4○D4 | φ: trivial image | 32 | | (C2xQ8).71C2^2 | 64,198 |
(C2×Q8).72C22 = C23.32C23 | φ: trivial image | 32 | | (C2xQ8).72C2^2 | 64,200 |
(C2×Q8).73C22 = C23.33C23 | φ: trivial image | 32 | | (C2xQ8).73C2^2 | 64,201 |
(C2×Q8).74C22 = Q8⋊6D4 | φ: trivial image | 32 | | (C2xQ8).74C2^2 | 64,231 |